0=4.9t^2+2t-950

Simple and best practice solution for 0=4.9t^2+2t-950 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=4.9t^2+2t-950 equation:



0=4.9t^2+2t-950
We move all terms to the left:
0-(4.9t^2+2t-950)=0
We add all the numbers together, and all the variables
-(4.9t^2+2t-950)=0
We get rid of parentheses
-4.9t^2-2t+950=0
a = -4.9; b = -2; c = +950;
Δ = b2-4ac
Δ = -22-4·(-4.9)·950
Δ = 18624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{18624}=\sqrt{64*291}=\sqrt{64}*\sqrt{291}=8\sqrt{291}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-8\sqrt{291}}{2*-4.9}=\frac{2-8\sqrt{291}}{-9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+8\sqrt{291}}{2*-4.9}=\frac{2+8\sqrt{291}}{-9.8} $

See similar equations:

| 3.8-x=4.9 | | 5(y+3)=1(y+1) | | 2b/2=4 | | 13.9+x=98.9 | | 1250+27.50=1400+20x | | 4/15=2/(y+8) | | 1/2(z+3)=1/2(z-7) | | 4/15=2/y+8 | | 73+17=x+9 | | -5f-(-8f)=6 | | -80-5y=11 | | 1y=1y+0 | | -80−5y=11 | | 8/x+9=5/x-3 | | 3x+12=37-2× | | 70+65-4+7x=180 | | 56+9x-7+86=180 | | 3.3+x/4=-3.1 | | 109/12=x/9 | | 43+6-8x+43=180 | | 2x-14+x+42=180 | | 2y+5+y=10 | | 3x^2+5x=5x-243 | | 50+5x+8+62=180 | | -1/4y+6=2/3y+28 | | 121+2h=983 | | 2x+18=3x+6+24=180 | | 111+38-2x+15=180 | | 3x^2-21=180 | | 7(3x-30)-6=3x | | x-10+27+90=180 | | 2x+18=3x+6=180 |

Equations solver categories